Introduction to the Command Line

In order to run Maven (which we will discuss in the next post), it is necessary to know how to run commands from the command line.  If you are not familiar with using the command window, this post will explain the two most important commands.  My instructions will refer to the Windows command line, but they can be adapted without too much difficulty to Linux or Mac.

To bring up the command line, go to the Start menu and type “cmd” in the search field.  Click the return key and a command window should open.

cd:
cd stands for “change directory”.  You will use this to navigate through your file system.  When you opened your command window, you probably saw something like this:  C:UsersYourName>.  This is your user folder.  If you were to navigate to it in the File Explorer, you would go to Computer->Windows7_OS (C:)
->Users->YourName.  (The OS will vary based on your computer, and the YourName will be your user name.)

Let’s try navigating to the Users folder.  In the command window, type “cd Users” and click return key.  Note that the command prompt now says C:Users>.

There is another way to navigate up one folder.  First, let’s return to your folder.  Type “cd YourName” (replacing the words YourName with your actual user name) and click Return.  Now the command prompt should say C:UsersYourName.  Now type “cd ..” and click Return.  Notice that you have returned to the Users folder.  The two dots send the instruction to go up one level.  If you type “cd..” and Return again, you will see C:> in the command prompt.

You can also navigate through more than one folder at a time.  Type “cd Users/YourName” (replacing the YourName with your user name) and click Return.  Now the command prompt will say C:UsersYourName.  You’ve navigated down two levels, from the C: level to the YourName level.

dir:
dir is the command used to list all the files in a particular location.  This really comes in handy when you can’t remember what you named a file.

Let’s try using the dir command.  In the command window, verify that the command prompt currently reads C:UsersYourName.  If it doesn’t, use the cd command to navigate there.  Now type “dir” and click Return.  You should get a list of all the files in your personal folder.

Let’s add a new file to this location.  It’s possible to do this through the command line, but that is beyond the scope of this tutorial.  Instead, create a simple Word or Notepad file called MyCommandFile, and save it in your folder.  Now return to the command window and type the “dir” command again.  You should see your new file in the directory.

Another shortcut to navigation when you have forgotten a file name is the tab key.  In the command line, type “cd My” and then click the tab key.  You should see the file name auto-complete for you.

Bonus command:  
One more helpful command to use is the up arrow key.  This key will go back through your most recent commands.  This really comes in handy if you have typed a particularly long command and would rather not type it again.

The command window is very helpful, and there are a number of good tutorials available if you would like to learn more about what it can do for you.

Setting Up Your Java Environment

In order to write your automated tests in Java, you will need the Java Development Kit, or JDK.  Here are instructions for downloading and installing the JDK:

1. Navigate to http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Click on the download button for the JDK

3. Click the radio button that signifies that you have accepted the license agreement

4.  Find your operating system and click on the download link.  If you are a Windows user and trying to determine whether you should use Windows x86 or Windows x64, go to the start menu, right-click on “Computer” and click “Properties”.  A popup window should appear.  Look at the entry next to “System type”.  A 32-bit operating system means you should use x86; a 64-bit operating system means you should use x64.

5.  Follow the installation prompts, and if prompted to do so, restart your computer

Next, you will need an Integrated Development Environment (IDE), like Eclipse.  Here’s how to download and install it:

1. Navigate to http://www.eclipse.org/downloads/

2. Use the dropdown at the top of the page to select your operating system

3. Find the entry for Eclipse IDE for Java Developers, and click on the link for either 32-bit or 64-bit, depending on your operating system

4. Follow the installation prompts

Now you are all ready to begin coding in Java!  Let’s write a program:

1. Open Eclipse

2. You will be prompted to name your workspace; give this space whatever file name and filepath you prefer, such as C:UsersYourNameworkspace.

3. The Eclipse window should open

4. Select File-> New-> Java Project

5. Give your project a name, such as MyFirstJavaProject, and click Finish

6. Look in the leftmost window, in the section called Package Explorer.  You should see a folder icon with the letter J above it, and your project name.

7. Right-click on the project name and choose New-> Package

8. Give your package a name, such as myFirstPackage, and click Finish

9. In the Package Explorer section you should now see a folder called src under the project name, with an icon that shows a folder with a package inside it.  You should also see a package icon under the src folder with your package name.  You also should see that the JRE System Library has been added to the project file.

10. Right-click on the package name and choose New->Class

11. Give the class a name, such as MyFirstClass, and click Finish

12. In the Package Explorer section you should now see a file called MyFirstClass.java.  The file will have an icon that looks like a sheet of paper with a J on it.

13. Look in the center section of the Eclipse window.  You should see that the class file you created is open, and has this text in it:

package myFirstPackage;
public class MyFirstClass {
}

14. Paste the following code in between the curly braces found after the class name:

public static void main(String[ ] args){
System.out.println(“Hello world!”);
}

15.  If you have done step 14 correctly, the whole class file should look like this:

package myFirstPackage;
public class MyFirstClass {
public static void main(String[ ] args){
System.out.println(“Hello world!”);
}
}

16. Save the changes you made by clicking on the disk icon in the toolbar

17. Right-click on the class name in the Package Explorer and choose Run As-> Java Application

18.  Look in the the bottommost pane of the Eclipse window- you should see a section called Console.  In this section, you should now see the message Hello world!

19.  Congratulations!  You have successfully set up Eclipse and run your first Java program!


Introduction to Java: Passing Parameters

When I first started learning Java, I was fairly perplexed by the parentheses found after every method.  Sometimes they were empty, and sometimes they had values in them, and I didn’t understand why.  Plus, in the declaration of a method, there was a variable mentioned before the method name, and I didn’t know why that was there.  I’ve found it’s easiest to think about parameters and methods in terms of input and output.   Here’s an example:

output Square (input) {

}

The green output describes what kind of result you are going to return from the method.  The green input describes what kind of input I put into the method.  This method is going to take a number, square it, and return the result of the squaring.  I would like the input number to be an integer, so I will declare that here:

output Square (int input) {

}

The word “input” is what I’m calling the variable that I’m going to pass into the method.  Because I know that if I square an integer, I will get an integer as a result, I’m going to declare that the output will be an integer:

int Square (int input) {

}

Note that I don’t need to create a variable name for the output when I’m declaring the method.  Now let’s add in the steps for the method:

int Square (int input) {

int output = input * input;
return output;

}

So what this function does is take the variable called input, squares it, sets it to equal an int variable called output, and then returns the output.

It’s also possible to have more than one input parameter:

String Square (int input, String name) {

int output = input * input;
String result = “Hi ” + name + “!  Your result is ” + ” output;
return result;

}

This is a little more confusing, so I will explain it in more detail.  The first line of the method is taking the input variable and squaring it, and setting it to a variable called output, just as it did before.  But in the second line we’re creating a String.  The characters in between the quote marks are entered into the string.  These are concatenated (added) with our int output and the String name that we entered in the parameters, using plus signs to add the characters:

Hi ” + name + “!  Your result is ” + ” output

So if I called the function like this:

Square(2, Kristin);

The result String would be set to:

Hi Kristin!  Your result is 4

Then if my main program wanted to output the result, I would use the instruction:

System.out.println (result);

And my result would be printed to the console.

Now, what about methods that don’t pass in any parameters?  It would seem as if parameters would be needed to run a method, but they aren’t.  Here’s an example:

void MyParameterlessMethod () {

System.out.println (“I can print something out without even passing in a parameter!”);

}

All this method is going to do is run the print instruction inside, which doesn’t need any parameter. You may have noticed the void before my method name.  This says that the method isn’t going to return anything to the main program.

Is it possible to have a method that doesn’t pass in any parameters, but still returns something? Sure!

int MyParameterlessMethod () {

int result = 4;
return result;

}

This method assigns the number 4 to the variable called result, and then returns it to the main program.

In my next post, I will discuss setting up Eclipse and writing a simple program.

Introduction to Java: Definitions

Another thing I struggled with when learning Java was what the difference was between a Class, an Object, and a Method.  Through personal experience and web searches, I have come up with this explanation:

A class is the basic building block in Java.  It consists of variables and methods.  Here’s an example:

public class Cat {  //this is the class

//these are the variables in the Cat class
String name;
int age;
int weight;
String color;

//these are the methods in the Cat class
public void eat() {
}

public void sleep() {
}

public void meow() {
}

}

A variable is a little bit of memory that stores a value to be used in a program.  A String is a bit of text, like “Hello!” or “rainbow”.  In the Cat class, the String variables we have are name (the name of the cat), and color (the color of the cat).  An int is an integer, like 7 or 13.  In the Cat class, the int variables we have are age (the age of the cat) and weight (the weight of the cat).

An Object is an instance of a class.  If we want our program to create and use a cat, we need to create a Cat object:

public void main() {  //this is the main method of our program

//this is where we create the new Cat Object
Cat Fluffy = new Cat;  //Fluffy is the variable name given to the Cat Object

}

method is a task or group of tasks.  If you are familiar with mathematical functions, you might want to think of a method as a function.  In the Cat class, the methods are eat(), sleep(), and meow().  The parentheses after the method name indicate what kind of parameter will be passed into the method.  In this case, eat(), sleep(), and meow() do not require a parameter.  In the next blog post I will give some examples of methods with parameters and how they work.

Introduction to Java: Object-Oriented Programming

Java is one of the most commonly used programming languages, and it works well with Webdriver and JQuery, which we will be using in our automated tests.  Java is an Object-Oriented Programming (OOP) Language.  You may have had exposure to OOP languages in the past, but if not, the concept may seem a little foreign at first.  Having grown up before OOP, I had a particularly tough time with it.  I hope that the explanation below will make it easier on you!

Think about the tasks that you do when you get ready in the morning.  You might: exercise, shower, and get dressed.  If you were writing a program, or class, to tell a robot to do these things, you would probably write a little subroutine, or method, for each task.  For example:

public class getReady {  //this is the class

exercise();  //this calls the exercise method
shower();
getDressed();

public void exercise() {  //this is the exercise method
pushups;
situps;
squats;
}

public void shower() {  //this is the shower method
get in shower;
lather;
rinse;
repeat;
}

public void getDressed() { //this is the get dressed method
put on shirt;
put on pants;
put on shoes;
}

}

Now consider your friend, who exercises and showers at night instead of in the morning.  His nighttime routine is: exercise, shower, put on pajamas.  If you were programming a robot to do your friend’s nighttime activities, it might look like this:

public class getReadyForBed {  //this is the class

exercise();
shower();
putOnPajamas();  //this calls the put on pajamas method

public void exercise() {
pushups;
situps;
squats;
}

public void shower() {
get in shower;
lather;
rinse;
repeat;
}

public void putOnPajamas() {  //this is the put on pajamas method
put on pajama top;
put on pajama bottoms;
}

}

Notice that the two classes have two methods that are exactly the same.  Why not share the code instead of copying and pasting it into each class?  That way if you ever need to make a change to your exercise method, you will only have to change it once.  Let’s make a base class that contains all the methods we might need:

public class Ready {    //this is our base class

public void exercise() {
pushups;
situps;
squats;
}

public void shower() {
get in shower;
lather;
rinse;
repeat;
}

public void getDressed() {
put on shirt;
put on pants;
put on shoes;
}

public void putOnPajamas() {
put on pajama top;
put on pajama bottoms;
}

}

Now, we can change our two programs to call upon the existing methods instead of copying and pasting them:

public class getReady extends Ready {  //this is your routine

exercise();
shower();
getDressed();

}

public class getReadyForBed extends Ready {  //this is your friend’s routine

exercise();
shower();
putOnPajamas();

}
See how much space this saves?  There are other reasons why OOP is a good idea, but the main thing to understand, in my opinion, is that OOP saves you from having to copy and paste code.

When to Automate

The first step in automation success is knowing when to automate and when not to automate.  Here are some guidelines:

  • DO automate repetitive tasks.

Recently I needed to add over 600 records to our application in order to fully test a feature.  Rather than add just a few records to partially test it, I created a simple test that would add as many records as I specified.  Another great thing to automate is a feature with a number of different permutations.

  • DON’T automate brand-new features.

Yes, you will probably want to automate the feature eventually, but not the instant it’s coded.  A good QA tester will spend a lot of time doing manual, exploratory testing to make sure that she fully understands the feature and knows its limitations.

  • DO automate basic smoke-level tests.

I like to think of smoke-level tests as tests that we would be really embarrassed by if they failed in the field.  One company where I worked had a search feature broken for weeks, and no one noticed because we hadn’t run a test on it.  Unfortunately, the bug was pushed out to production and seen by customers.  Automating these tests and running them at every build or early in the morning can help catch major problems quickly.

  • DON’T automate fragile features or works in progress.

There may be a feature of your company’s software that seems to break every time someone looks at it funny.  Automating tests of this feature practically guarantees that the tests will fail daily.  Similarly, a feature that is still in progress will have many changes that will cause you to make frequent code changes in your tests.  It’s better to keep testing the feature manually and reporting bugs on it until it becomes more stable.

  • DO automate things users will do every day.

What is the primary function of your software?  What is the typical path that a user will take when using your software?  This is the kind of thing that should be automated.   Rather than running through this manual path every morning at 9 AM, you can set your automated test to do it at 8 AM and you’ll know right away if there is a problem.  

  • DON’T automate weird edge cases.

There will always be bugs in software, but some will be more likely to be seen by users than others.  You may be fascinated by the bug that is caused by going to a specific sequence of pages, entering non-UTF-8 characters, and then clicking the Back button three times in a row, but since it’s very unlikely that an end-user will do this, it’s not worth your time to design an automated test for it.

Why Automate?

For many of you, your initial answer to the question “Why automate?” may be “Because management wants me to.”  This is, of course, a valid reason.  But after you have a few automated tests written, you will discover other, more important reasons:

  • It saves you time.

At first it will seem as if automation is a huge time-sink, because it will take several weeks to get your automation system up and running.  But once it’s in place, it will save you valuable testing time.  As I am writing this blog, all of my automated smoke tests are running.  Even without looking at our application, I will know if something went wrong with the build this morning.

  • It frees you from some repetitive tasks.

We have a search form in our application that has four editable fields: Last Name, Company, Email, and Phone Number.  In order to test this feature well, I would need to test with every possible permutation: just one field at a time, two fields at a time, three fields at a time, and finally four fields at a time.  This adds up to fifteen searches.  It’s rather tedious to do this every time I need to test the search function.  But my automated test is happy to run through these fifteen searches, as many times as I tell it to.

  • It helps you to think more critically about your testing.
When I’m manually testing, I tend to follow a written plan and add in a few ad hoc tests as well.  But when I’m writing an automated test, I need to think about why I’m running the test.  The test engine will not be exploring, so I’m going to need to tell it to do something very specific.  What are the minimum steps required to ensure that the feature works?  Will I need to vary those steps for broader coverage, and what will be the most efficient way to do that?

  • It helps you to understand your development team.
Before I started writing automated tests, I knew a bit about coding from my college courses, but I’d never had real hands-on experience.  Using an IDE and writing in Java helped me have more sympathy for what developers go through in order to code, and it also taught me how programs are structured and how the build process works.  This has helped me become a better tester.

The path to learning automation won’t be easy, but it will teach you important skills, streamline your testing process, help you understand the development life-cycle, and improve your thinking about your tests.

Welcome!

This blog is aimed at Software QA Engineers who know nothing about test automation.  I was just like you six months ago.  After much trial and error, I have successfully automated many tests, and I would like to share what I learned with you and hopefully save you some time and trouble!

In the next few weeks I will be covering:

  • Why automate?
  • When to use automated tests and when to use manual tests
  • Introduction to Java
  • Setting up Eclipse
  • Setting up JUnit
  • Introduction to WebDriver
  • Setting up Maven
  • Simple Maven commands
  • Setting up Sauce
  • Setting up Bamboo
  • Creating your Base Test
  • Introduction to JQuery
  • Troubleshooting navigation issues